384 lines
14 KiB
Arduino
384 lines
14 KiB
Arduino
|
#include "FastLED.h"
|
||
|
|
||
|
#if defined(FASTLED_VERSION) && (FASTLED_VERSION < 3001000)
|
||
|
#warning "Requires FastLED 3.1 or later; check github for latest code."
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#define NUM_LEDS 100
|
||
|
#define LED_TYPE WS2811
|
||
|
#define COLOR_ORDER GRB
|
||
|
#define DATA_PIN 3
|
||
|
//#define CLK_PIN 4
|
||
|
#define VOLTS 12
|
||
|
#define MAX_MA 4000
|
||
|
|
||
|
// TwinkleFOX: Twinkling 'holiday' lights that fade in and out.
|
||
|
// Colors are chosen from a palette; a few palettes are provided.
|
||
|
//
|
||
|
// This December 2015 implementation improves on the December 2014 version
|
||
|
// in several ways:
|
||
|
// - smoother fading, compatible with any colors and any palettes
|
||
|
// - easier control of twinkle speed and twinkle density
|
||
|
// - supports an optional 'background color'
|
||
|
// - takes even less RAM: zero RAM overhead per pixel
|
||
|
// - illustrates a couple of interesting techniques (uh oh...)
|
||
|
//
|
||
|
// The idea behind this (new) implementation is that there's one
|
||
|
// basic, repeating pattern that each pixel follows like a waveform:
|
||
|
// The brightness rises from 0..255 and then falls back down to 0.
|
||
|
// The brightness at any given point in time can be determined as
|
||
|
// as a function of time, for example:
|
||
|
// brightness = sine( time ); // a sine wave of brightness over time
|
||
|
//
|
||
|
// So the way this implementation works is that every pixel follows
|
||
|
// the exact same wave function over time. In this particular case,
|
||
|
// I chose a sawtooth triangle wave (triwave8) rather than a sine wave,
|
||
|
// but the idea is the same: brightness = triwave8( time ).
|
||
|
//
|
||
|
// Of course, if all the pixels used the exact same wave form, and
|
||
|
// if they all used the exact same 'clock' for their 'time base', all
|
||
|
// the pixels would brighten and dim at once -- which does not look
|
||
|
// like twinkling at all.
|
||
|
//
|
||
|
// So to achieve random-looking twinkling, each pixel is given a
|
||
|
// slightly different 'clock' signal. Some of the clocks run faster,
|
||
|
// some run slower, and each 'clock' also has a random offset from zero.
|
||
|
// The net result is that the 'clocks' for all the pixels are always out
|
||
|
// of sync from each other, producing a nice random distribution
|
||
|
// of twinkles.
|
||
|
//
|
||
|
// The 'clock speed adjustment' and 'time offset' for each pixel
|
||
|
// are generated randomly. One (normal) approach to implementing that
|
||
|
// would be to randomly generate the clock parameters for each pixel
|
||
|
// at startup, and store them in some arrays. However, that consumes
|
||
|
// a great deal of precious RAM, and it turns out to be totally
|
||
|
// unnessary! If the random number generate is 'seeded' with the
|
||
|
// same starting value every time, it will generate the same sequence
|
||
|
// of values every time. So the clock adjustment parameters for each
|
||
|
// pixel are 'stored' in a pseudo-random number generator! The PRNG
|
||
|
// is reset, and then the first numbers out of it are the clock
|
||
|
// adjustment parameters for the first pixel, the second numbers out
|
||
|
// of it are the parameters for the second pixel, and so on.
|
||
|
// In this way, we can 'store' a stable sequence of thousands of
|
||
|
// random clock adjustment parameters in literally two bytes of RAM.
|
||
|
//
|
||
|
// There's a little bit of fixed-point math involved in applying the
|
||
|
// clock speed adjustments, which are expressed in eighths. Each pixel's
|
||
|
// clock speed ranges from 8/8ths of the system clock (i.e. 1x) to
|
||
|
// 23/8ths of the system clock (i.e. nearly 3x).
|
||
|
//
|
||
|
// On a basic Arduino Uno or Leonardo, this code can twinkle 300+ pixels
|
||
|
// smoothly at over 50 updates per seond.
|
||
|
//
|
||
|
// -Mark Kriegsman, December 2015
|
||
|
|
||
|
CRGBArray<NUM_LEDS> leds;
|
||
|
|
||
|
// Overall twinkle speed.
|
||
|
// 0 (VERY slow) to 8 (VERY fast).
|
||
|
// 4, 5, and 6 are recommended, default is 4.
|
||
|
#define TWINKLE_SPEED 4
|
||
|
|
||
|
// Overall twinkle density.
|
||
|
// 0 (NONE lit) to 8 (ALL lit at once).
|
||
|
// Default is 5.
|
||
|
#define TWINKLE_DENSITY 5
|
||
|
|
||
|
// How often to change color palettes.
|
||
|
#define SECONDS_PER_PALETTE 30
|
||
|
// Also: toward the bottom of the file is an array
|
||
|
// called "ActivePaletteList" which controls which color
|
||
|
// palettes are used; you can add or remove color palettes
|
||
|
// from there freely.
|
||
|
|
||
|
// Background color for 'unlit' pixels
|
||
|
// Can be set to CRGB::Black if desired.
|
||
|
CRGB gBackgroundColor = CRGB::Black;
|
||
|
// Example of dim incandescent fairy light background color
|
||
|
// CRGB gBackgroundColor = CRGB(CRGB::FairyLight).nscale8_video(16);
|
||
|
|
||
|
// If AUTO_SELECT_BACKGROUND_COLOR is set to 1,
|
||
|
// then for any palette where the first two entries
|
||
|
// are the same, a dimmed version of that color will
|
||
|
// automatically be used as the background color.
|
||
|
#define AUTO_SELECT_BACKGROUND_COLOR 0
|
||
|
|
||
|
// If COOL_LIKE_INCANDESCENT is set to 1, colors will
|
||
|
// fade out slighted 'reddened', similar to how
|
||
|
// incandescent bulbs change color as they get dim down.
|
||
|
#define COOL_LIKE_INCANDESCENT 1
|
||
|
|
||
|
|
||
|
CRGBPalette16 gCurrentPalette;
|
||
|
CRGBPalette16 gTargetPalette;
|
||
|
|
||
|
void setup() {
|
||
|
delay( 3000 ); //safety startup delay
|
||
|
FastLED.setMaxPowerInVoltsAndMilliamps( VOLTS, MAX_MA);
|
||
|
FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LEDS)
|
||
|
.setCorrection(TypicalLEDStrip);
|
||
|
|
||
|
chooseNextColorPalette(gTargetPalette);
|
||
|
}
|
||
|
|
||
|
|
||
|
void loop()
|
||
|
{
|
||
|
EVERY_N_SECONDS( SECONDS_PER_PALETTE ) {
|
||
|
chooseNextColorPalette( gTargetPalette );
|
||
|
}
|
||
|
|
||
|
EVERY_N_MILLISECONDS( 10 ) {
|
||
|
nblendPaletteTowardPalette( gCurrentPalette, gTargetPalette, 12);
|
||
|
}
|
||
|
|
||
|
drawTwinkles( leds);
|
||
|
|
||
|
FastLED.show();
|
||
|
}
|
||
|
|
||
|
|
||
|
// This function loops over each pixel, calculates the
|
||
|
// adjusted 'clock' that this pixel should use, and calls
|
||
|
// "CalculateOneTwinkle" on each pixel. It then displays
|
||
|
// either the twinkle color of the background color,
|
||
|
// whichever is brighter.
|
||
|
void drawTwinkles( CRGBSet& L)
|
||
|
{
|
||
|
// "PRNG16" is the pseudorandom number generator
|
||
|
// It MUST be reset to the same starting value each time
|
||
|
// this function is called, so that the sequence of 'random'
|
||
|
// numbers that it generates is (paradoxically) stable.
|
||
|
uint16_t PRNG16 = 11337;
|
||
|
|
||
|
uint32_t clock32 = millis();
|
||
|
|
||
|
// Set up the background color, "bg".
|
||
|
// if AUTO_SELECT_BACKGROUND_COLOR == 1, and the first two colors of
|
||
|
// the current palette are identical, then a deeply faded version of
|
||
|
// that color is used for the background color
|
||
|
CRGB bg;
|
||
|
if( (AUTO_SELECT_BACKGROUND_COLOR == 1) &&
|
||
|
(gCurrentPalette[0] == gCurrentPalette[1] )) {
|
||
|
bg = gCurrentPalette[0];
|
||
|
uint8_t bglight = bg.getAverageLight();
|
||
|
if( bglight > 64) {
|
||
|
bg.nscale8_video( 16); // very bright, so scale to 1/16th
|
||
|
} else if( bglight > 16) {
|
||
|
bg.nscale8_video( 64); // not that bright, so scale to 1/4th
|
||
|
} else {
|
||
|
bg.nscale8_video( 86); // dim, scale to 1/3rd.
|
||
|
}
|
||
|
} else {
|
||
|
bg = gBackgroundColor; // just use the explicitly defined background color
|
||
|
}
|
||
|
|
||
|
uint8_t backgroundBrightness = bg.getAverageLight();
|
||
|
|
||
|
for( CRGB& pixel: L) {
|
||
|
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
|
||
|
uint16_t myclockoffset16= PRNG16; // use that number as clock offset
|
||
|
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
|
||
|
// use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
|
||
|
uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF)>>4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
|
||
|
uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
|
||
|
uint8_t myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel
|
||
|
|
||
|
// We now have the adjusted 'clock' for this pixel, now we call
|
||
|
// the function that computes what color the pixel should be based
|
||
|
// on the "brightness = f( time )" idea.
|
||
|
CRGB c = computeOneTwinkle( myclock30, myunique8);
|
||
|
|
||
|
uint8_t cbright = c.getAverageLight();
|
||
|
int16_t deltabright = cbright - backgroundBrightness;
|
||
|
if( deltabright >= 32 || (!bg)) {
|
||
|
// If the new pixel is significantly brighter than the background color,
|
||
|
// use the new color.
|
||
|
pixel = c;
|
||
|
} else if( deltabright > 0 ) {
|
||
|
// If the new pixel is just slightly brighter than the background color,
|
||
|
// mix a blend of the new color and the background color
|
||
|
pixel = blend( bg, c, deltabright * 8);
|
||
|
} else {
|
||
|
// if the new pixel is not at all brighter than the background color,
|
||
|
// just use the background color.
|
||
|
pixel = bg;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// This function takes a time in pseudo-milliseconds,
|
||
|
// figures out brightness = f( time ), and also hue = f( time )
|
||
|
// The 'low digits' of the millisecond time are used as
|
||
|
// input to the brightness wave function.
|
||
|
// The 'high digits' are used to select a color, so that the color
|
||
|
// does not change over the course of the fade-in, fade-out
|
||
|
// of one cycle of the brightness wave function.
|
||
|
// The 'high digits' are also used to determine whether this pixel
|
||
|
// should light at all during this cycle, based on the TWINKLE_DENSITY.
|
||
|
CRGB computeOneTwinkle( uint32_t ms, uint8_t salt)
|
||
|
{
|
||
|
uint16_t ticks = ms >> (8-TWINKLE_SPEED);
|
||
|
uint8_t fastcycle8 = ticks;
|
||
|
uint16_t slowcycle16 = (ticks >> 8) + salt;
|
||
|
slowcycle16 += sin8( slowcycle16);
|
||
|
slowcycle16 = (slowcycle16 * 2053) + 1384;
|
||
|
uint8_t slowcycle8 = (slowcycle16 & 0xFF) + (slowcycle16 >> 8);
|
||
|
|
||
|
uint8_t bright = 0;
|
||
|
if( ((slowcycle8 & 0x0E)/2) < TWINKLE_DENSITY) {
|
||
|
bright = attackDecayWave8( fastcycle8);
|
||
|
}
|
||
|
|
||
|
uint8_t hue = slowcycle8 - salt;
|
||
|
CRGB c;
|
||
|
if( bright > 0) {
|
||
|
c = ColorFromPalette( gCurrentPalette, hue, bright, NOBLEND);
|
||
|
if( COOL_LIKE_INCANDESCENT == 1 ) {
|
||
|
coolLikeIncandescent( c, fastcycle8);
|
||
|
}
|
||
|
} else {
|
||
|
c = CRGB::Black;
|
||
|
}
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
|
||
|
// This function is like 'triwave8', which produces a
|
||
|
// symmetrical up-and-down triangle sawtooth waveform, except that this
|
||
|
// function produces a triangle wave with a faster attack and a slower decay:
|
||
|
//
|
||
|
// / \
|
||
|
// / \
|
||
|
// / \
|
||
|
// / \
|
||
|
//
|
||
|
|
||
|
uint8_t attackDecayWave8( uint8_t i)
|
||
|
{
|
||
|
if( i < 86) {
|
||
|
return i * 3;
|
||
|
} else {
|
||
|
i -= 86;
|
||
|
return 255 - (i + (i/2));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// This function takes a pixel, and if its in the 'fading down'
|
||
|
// part of the cycle, it adjusts the color a little bit like the
|
||
|
// way that incandescent bulbs fade toward 'red' as they dim.
|
||
|
void coolLikeIncandescent( CRGB& c, uint8_t phase)
|
||
|
{
|
||
|
if( phase < 128) return;
|
||
|
|
||
|
uint8_t cooling = (phase - 128) >> 4;
|
||
|
c.g = qsub8( c.g, cooling);
|
||
|
c.b = qsub8( c.b, cooling * 2);
|
||
|
}
|
||
|
|
||
|
// A mostly red palette with green accents and white trim.
|
||
|
// "CRGB::Gray" is used as white to keep the brightness more uniform.
|
||
|
const TProgmemRGBPalette16 RedGreenWhite_p FL_PROGMEM =
|
||
|
{ CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
|
||
|
CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
|
||
|
CRGB::Red, CRGB::Red, CRGB::Gray, CRGB::Gray,
|
||
|
CRGB::Green, CRGB::Green, CRGB::Green, CRGB::Green };
|
||
|
|
||
|
// A mostly (dark) green palette with red berries.
|
||
|
#define Holly_Green 0x00580c
|
||
|
#define Holly_Red 0xB00402
|
||
|
const TProgmemRGBPalette16 Holly_p FL_PROGMEM =
|
||
|
{ Holly_Green, Holly_Green, Holly_Green, Holly_Green,
|
||
|
Holly_Green, Holly_Green, Holly_Green, Holly_Green,
|
||
|
Holly_Green, Holly_Green, Holly_Green, Holly_Green,
|
||
|
Holly_Green, Holly_Green, Holly_Green, Holly_Red
|
||
|
};
|
||
|
|
||
|
// A red and white striped palette
|
||
|
// "CRGB::Gray" is used as white to keep the brightness more uniform.
|
||
|
const TProgmemRGBPalette16 RedWhite_p FL_PROGMEM =
|
||
|
{ CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
|
||
|
CRGB::Gray, CRGB::Gray, CRGB::Gray, CRGB::Gray,
|
||
|
CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red,
|
||
|
CRGB::Gray, CRGB::Gray, CRGB::Gray, CRGB::Gray };
|
||
|
|
||
|
// A mostly blue palette with white accents.
|
||
|
// "CRGB::Gray" is used as white to keep the brightness more uniform.
|
||
|
const TProgmemRGBPalette16 BlueWhite_p FL_PROGMEM =
|
||
|
{ CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
|
||
|
CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
|
||
|
CRGB::Blue, CRGB::Blue, CRGB::Blue, CRGB::Blue,
|
||
|
CRGB::Blue, CRGB::Gray, CRGB::Gray, CRGB::Gray };
|
||
|
|
||
|
// A pure "fairy light" palette with some brightness variations
|
||
|
#define HALFFAIRY ((CRGB::FairyLight & 0xFEFEFE) / 2)
|
||
|
#define QUARTERFAIRY ((CRGB::FairyLight & 0xFCFCFC) / 4)
|
||
|
const TProgmemRGBPalette16 FairyLight_p FL_PROGMEM =
|
||
|
{ CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight,
|
||
|
HALFFAIRY, HALFFAIRY, CRGB::FairyLight, CRGB::FairyLight,
|
||
|
QUARTERFAIRY, QUARTERFAIRY, CRGB::FairyLight, CRGB::FairyLight,
|
||
|
CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight, CRGB::FairyLight };
|
||
|
|
||
|
// A palette of soft snowflakes with the occasional bright one
|
||
|
const TProgmemRGBPalette16 Snow_p FL_PROGMEM =
|
||
|
{ 0x304048, 0x304048, 0x304048, 0x304048,
|
||
|
0x304048, 0x304048, 0x304048, 0x304048,
|
||
|
0x304048, 0x304048, 0x304048, 0x304048,
|
||
|
0x304048, 0x304048, 0x304048, 0xE0F0FF };
|
||
|
|
||
|
// A palette reminiscent of large 'old-school' C9-size tree lights
|
||
|
// in the five classic colors: red, orange, green, blue, and white.
|
||
|
#define C9_Red 0xB80400
|
||
|
#define C9_Orange 0x902C02
|
||
|
#define C9_Green 0x046002
|
||
|
#define C9_Blue 0x070758
|
||
|
#define C9_White 0x606820
|
||
|
const TProgmemRGBPalette16 RetroC9_p FL_PROGMEM =
|
||
|
{ C9_Red, C9_Orange, C9_Red, C9_Orange,
|
||
|
C9_Orange, C9_Red, C9_Orange, C9_Red,
|
||
|
C9_Green, C9_Green, C9_Green, C9_Green,
|
||
|
C9_Blue, C9_Blue, C9_Blue,
|
||
|
C9_White
|
||
|
};
|
||
|
|
||
|
// A cold, icy pale blue palette
|
||
|
#define Ice_Blue1 0x0C1040
|
||
|
#define Ice_Blue2 0x182080
|
||
|
#define Ice_Blue3 0x5080C0
|
||
|
const TProgmemRGBPalette16 Ice_p FL_PROGMEM =
|
||
|
{
|
||
|
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
|
||
|
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
|
||
|
Ice_Blue1, Ice_Blue1, Ice_Blue1, Ice_Blue1,
|
||
|
Ice_Blue2, Ice_Blue2, Ice_Blue2, Ice_Blue3
|
||
|
};
|
||
|
|
||
|
|
||
|
// Add or remove palette names from this list to control which color
|
||
|
// palettes are used, and in what order.
|
||
|
const TProgmemRGBPalette16* ActivePaletteList[] = {
|
||
|
&RetroC9_p,
|
||
|
&BlueWhite_p,
|
||
|
&RainbowColors_p,
|
||
|
&FairyLight_p,
|
||
|
&RedGreenWhite_p,
|
||
|
&PartyColors_p,
|
||
|
&RedWhite_p,
|
||
|
&Snow_p,
|
||
|
&Holly_p,
|
||
|
&Ice_p
|
||
|
};
|
||
|
|
||
|
|
||
|
// Advance to the next color palette in the list (above).
|
||
|
void chooseNextColorPalette( CRGBPalette16& pal)
|
||
|
{
|
||
|
const uint8_t numberOfPalettes = sizeof(ActivePaletteList) / sizeof(ActivePaletteList[0]);
|
||
|
static uint8_t whichPalette = -1;
|
||
|
whichPalette = addmod8( whichPalette, 1, numberOfPalettes);
|
||
|
|
||
|
pal = *(ActivePaletteList[whichPalette]);
|
||
|
}
|