First commit.

This commit is contained in:
2020-07-17 18:55:06 +02:00
commit b47a0ab935
247 changed files with 30192 additions and 0 deletions

View File

@ -0,0 +1,124 @@
#ifndef __INC_CLOCKLESS_ARM_K20_H
#define __INC_CLOCKLESS_ARM_K20_H
FASTLED_NAMESPACE_BEGIN
// Definition for a single channel clockless controller for the k20 family of chips, like that used in the teensy 3.0/3.1
// See clockless.h for detailed info on how the template parameters are used.
#if defined(FASTLED_TEENSY3)
#define FASTLED_HAS_CLOCKLESS 1
template <int DATA_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = RGB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 50>
class ClocklessController : public CPixelLEDController<RGB_ORDER> {
typedef typename FastPin<DATA_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPin<DATA_PIN>::port_t data_t;
data_t mPinMask;
data_ptr_t mPort;
CMinWait<WAIT_TIME> mWait;
public:
virtual void init() {
FastPin<DATA_PIN>::setOutput();
mPinMask = FastPin<DATA_PIN>::mask();
mPort = FastPin<DATA_PIN>::port();
}
virtual uint16_t getMaxRefreshRate() const { return 400; }
protected:
virtual void showPixels(PixelController<RGB_ORDER> & pixels) {
mWait.wait();
if(!showRGBInternal(pixels)) {
sei(); delayMicroseconds(WAIT_TIME); cli();
showRGBInternal(pixels);
}
mWait.mark();
}
template<int BITS> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & next_mark, register data_ptr_t port, register data_t hi, register data_t lo, register uint8_t & b) {
for(register uint32_t i = BITS-1; i > 0; i--) {
while(ARM_DWT_CYCCNT < next_mark);
next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
FastPin<DATA_PIN>::fastset(port, hi);
if(b&0x80) {
while((next_mark - ARM_DWT_CYCCNT) > (T3+(2*(F_CPU/24000000))));
FastPin<DATA_PIN>::fastset(port, lo);
} else {
while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+(2*(F_CPU/24000000))));
FastPin<DATA_PIN>::fastset(port, lo);
}
b <<= 1;
}
while(ARM_DWT_CYCCNT < next_mark);
next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
FastPin<DATA_PIN>::fastset(port, hi);
if(b&0x80) {
while((next_mark - ARM_DWT_CYCCNT) > (T3+(2*(F_CPU/24000000))));
FastPin<DATA_PIN>::fastset(port, lo);
} else {
while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+(2*(F_CPU/24000000))));
FastPin<DATA_PIN>::fastset(port, lo);
}
}
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
static uint32_t showRGBInternal(PixelController<RGB_ORDER> pixels) {
// Get access to the clock
ARM_DEMCR |= ARM_DEMCR_TRCENA;
ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
ARM_DWT_CYCCNT = 0;
register data_ptr_t port = FastPin<DATA_PIN>::port();
register data_t hi = *port | FastPin<DATA_PIN>::mask();;
register data_t lo = *port & ~FastPin<DATA_PIN>::mask();;
*port = lo;
// Setup the pixel controller and load/scale the first byte
pixels.preStepFirstByteDithering();
register uint8_t b = pixels.loadAndScale0();
cli();
uint32_t next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
while(pixels.has(1)) {
pixels.stepDithering();
#if (FASTLED_ALLOW_INTERRUPTS == 1)
cli();
// if interrupts took longer than 45µs, punt on the current frame
if(ARM_DWT_CYCCNT > next_mark) {
if((ARM_DWT_CYCCNT-next_mark) > ((WAIT_TIME-INTERRUPT_THRESHOLD)*CLKS_PER_US)) { sei(); return 0; }
}
hi = *port | FastPin<DATA_PIN>::mask();
lo = *port & ~FastPin<DATA_PIN>::mask();
#endif
// Write first byte, read next byte
writeBits<8+XTRA0>(next_mark, port, hi, lo, b);
b = pixels.loadAndScale1();
// Write second byte, read 3rd byte
writeBits<8+XTRA0>(next_mark, port, hi, lo, b);
b = pixels.loadAndScale2();
// Write third byte, read 1st byte of next pixel
writeBits<8+XTRA0>(next_mark, port, hi, lo, b);
b = pixels.advanceAndLoadAndScale0();
#if (FASTLED_ALLOW_INTERRUPTS == 1)
sei();
#endif
};
sei();
return ARM_DWT_CYCCNT;
}
};
#endif
FASTLED_NAMESPACE_END
#endif

View File

@ -0,0 +1,330 @@
#ifndef __INC_BLOCK_CLOCKLESS_ARM_K20_H
#define __INC_BLOCK_CLOCKLESS_ARM_K20_H
// Definition for a single channel clockless controller for the k20 family of chips, like that used in the teensy 3.0/3.1
// See clockless.h for detailed info on how the template parameters are used.
#if defined(FASTLED_TEENSY3)
#define FASTLED_HAS_BLOCKLESS 1
#define PORTC_FIRST_PIN 15
#define PORTD_FIRST_PIN 2
#define HAS_PORTDC 1
#define PORT_MASK (((1<<LANES)-1) & ((FIRST_PIN==2) ? 0xFF : 0xFFF))
#define MIN(X,Y) (((X)<(Y)) ? (X):(Y))
#define USED_LANES ((FIRST_PIN==2) ? MIN(LANES,8) : MIN(LANES,12))
#include <kinetis.h>
FASTLED_NAMESPACE_BEGIN
template <uint8_t LANES, int FIRST_PIN, int T1, int T2, int T3, EOrder RGB_ORDER = GRB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 40>
class InlineBlockClocklessController : public CPixelLEDController<RGB_ORDER, LANES, PORT_MASK> {
typedef typename FastPin<FIRST_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPin<FIRST_PIN>::port_t data_t;
data_t mPinMask;
data_ptr_t mPort;
CMinWait<WAIT_TIME> mWait;
public:
virtual int size() { return CLEDController::size() * LANES; }
virtual void showPixels(PixelController<RGB_ORDER, LANES, PORT_MASK> & pixels) {
mWait.wait();
uint32_t clocks = showRGBInternal(pixels);
#if FASTLED_ALLOW_INTERRUPTS == 0
// Adjust the timer
long microsTaken = CLKS_TO_MICROS(clocks);
MS_COUNTER += (1 + (microsTaken / 1000));
#endif
mWait.mark();
}
virtual void init() {
if(FIRST_PIN == PORTC_FIRST_PIN) { // PORTC
switch(USED_LANES) {
case 12: FastPin<30>::setOutput();
case 11: FastPin<29>::setOutput();
case 10: FastPin<27>::setOutput();
case 9: FastPin<28>::setOutput();
case 8: FastPin<12>::setOutput();
case 7: FastPin<11>::setOutput();
case 6: FastPin<13>::setOutput();
case 5: FastPin<10>::setOutput();
case 4: FastPin<9>::setOutput();
case 3: FastPin<23>::setOutput();
case 2: FastPin<22>::setOutput();
case 1: FastPin<15>::setOutput();
}
} else if(FIRST_PIN == PORTD_FIRST_PIN) { // PORTD
switch(USED_LANES) {
case 8: FastPin<5>::setOutput();
case 7: FastPin<21>::setOutput();
case 6: FastPin<20>::setOutput();
case 5: FastPin<6>::setOutput();
case 4: FastPin<8>::setOutput();
case 3: FastPin<7>::setOutput();
case 2: FastPin<14>::setOutput();
case 1: FastPin<2>::setOutput();
}
}
mPinMask = FastPin<FIRST_PIN>::mask();
mPort = FastPin<FIRST_PIN>::port();
}
virtual uint16_t getMaxRefreshRate() const { return 400; }
typedef union {
uint8_t bytes[12];
uint16_t shorts[6];
uint32_t raw[3];
} Lines;
template<int BITS,int PX> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & next_mark, register Lines & b, PixelController<RGB_ORDER, LANES, PORT_MASK> &pixels) { // , register uint32_t & b2) {
register Lines b2;
if(USED_LANES>8) {
transpose8<1,2>(b.bytes,b2.bytes);
transpose8<1,2>(b.bytes+8,b2.bytes+1);
} else {
transpose8x1(b.bytes,b2.bytes);
}
register uint8_t d = pixels.template getd<PX>(pixels);
register uint8_t scale = pixels.template getscale<PX>(pixels);
for(register uint32_t i = 0; i < (USED_LANES/2); i++) {
while(ARM_DWT_CYCCNT < next_mark);
next_mark = ARM_DWT_CYCCNT + (T1+T2+T3)-3;
*FastPin<FIRST_PIN>::sport() = PORT_MASK;
while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+(2*(F_CPU/24000000))));
if(USED_LANES>8) {
*FastPin<FIRST_PIN>::cport() = ((~b2.shorts[i]) & PORT_MASK);
} else {
*FastPin<FIRST_PIN>::cport() = ((~b2.bytes[7-i]) & PORT_MASK);
}
while((next_mark - ARM_DWT_CYCCNT) > (T3));
*FastPin<FIRST_PIN>::cport() = PORT_MASK;
b.bytes[i] = pixels.template loadAndScale<PX>(pixels,i,d,scale);
b.bytes[i+(USED_LANES/2)] = pixels.template loadAndScale<PX>(pixels,i+(USED_LANES/2),d,scale);
}
// if folks use an odd numnber of lanes, get the last byte's value here
if(USED_LANES & 0x01) {
b.bytes[USED_LANES-1] = pixels.template loadAndScale<PX>(pixels,USED_LANES-1,d,scale);
}
for(register uint32_t i = USED_LANES/2; i < 8; i++) {
while(ARM_DWT_CYCCNT < next_mark);
next_mark = ARM_DWT_CYCCNT + (T1+T2+T3)-3;
*FastPin<FIRST_PIN>::sport() = PORT_MASK;
while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+(2*(F_CPU/24000000))));
if(USED_LANES>8) {
*FastPin<FIRST_PIN>::cport() = ((~b2.shorts[i]) & PORT_MASK);
} else {
// b2.bytes[0] = 0;
*FastPin<FIRST_PIN>::cport() = ((~b2.bytes[7-i]) & PORT_MASK);
}
while((next_mark - ARM_DWT_CYCCNT) > (T3));
*FastPin<FIRST_PIN>::cport() = PORT_MASK;
}
}
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
static uint32_t showRGBInternal(PixelController<RGB_ORDER, LANES, PORT_MASK> &allpixels) {
// Get access to the clock
ARM_DEMCR |= ARM_DEMCR_TRCENA;
ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
ARM_DWT_CYCCNT = 0;
// Setup the pixel controller and load/scale the first byte
allpixels.preStepFirstByteDithering();
register Lines b0;
allpixels.preStepFirstByteDithering();
for(int i = 0; i < USED_LANES; i++) {
b0.bytes[i] = allpixels.loadAndScale0(i);
}
cli();
uint32_t next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
while(allpixels.has(1)) {
#if (FASTLED_ALLOW_INTERRUPTS == 1)
cli();
// if interrupts took longer than 45µs, punt on the current frame
if(ARM_DWT_CYCCNT > next_mark) {
if((ARM_DWT_CYCCNT-next_mark) > ((WAIT_TIME-5)*CLKS_PER_US)) { sei(); return ARM_DWT_CYCCNT; }
}
#endif
allpixels.stepDithering();
// Write first byte, read next byte
writeBits<8+XTRA0,1>(next_mark, b0, allpixels);
// Write second byte, read 3rd byte
writeBits<8+XTRA0,2>(next_mark, b0, allpixels);
allpixels.advanceData();
// Write third byte
writeBits<8+XTRA0,0>(next_mark, b0, allpixels);
#if (FASTLED_ALLOW_INTERRUPTS == 1)
sei();
#endif
};
return ARM_DWT_CYCCNT;
}
};
#define PMASK ((1<<(LANES))-1)
#define PMASK_HI (PMASK>>8 & 0xFF)
#define PMASK_LO (PMASK & 0xFF)
template <uint8_t LANES, int T1, int T2, int T3, EOrder RGB_ORDER = GRB, int XTRA0 = 0, bool FLIP = false, int WAIT_TIME = 50>
class SixteenWayInlineBlockClocklessController : public CPixelLEDController<RGB_ORDER, LANES, PMASK> {
typedef typename FastPin<PORTC_FIRST_PIN>::port_ptr_t data_ptr_t;
typedef typename FastPin<PORTC_FIRST_PIN>::port_t data_t;
data_t mPinMask;
data_ptr_t mPort;
CMinWait<WAIT_TIME> mWait;
public:
virtual void init() {
static_assert(LANES <= 16, "Maximum of 16 lanes for Teensy parallel controllers!");
// FastPin<30>::setOutput();
// FastPin<29>::setOutput();
// FastPin<27>::setOutput();
// FastPin<28>::setOutput();
switch(LANES) {
case 16: FastPin<12>::setOutput();
case 15: FastPin<11>::setOutput();
case 14: FastPin<13>::setOutput();
case 13: FastPin<10>::setOutput();
case 12: FastPin<9>::setOutput();
case 11: FastPin<23>::setOutput();
case 10: FastPin<22>::setOutput();
case 9: FastPin<15>::setOutput();
case 8: FastPin<5>::setOutput();
case 7: FastPin<21>::setOutput();
case 6: FastPin<20>::setOutput();
case 5: FastPin<6>::setOutput();
case 4: FastPin<8>::setOutput();
case 3: FastPin<7>::setOutput();
case 2: FastPin<14>::setOutput();
case 1: FastPin<2>::setOutput();
}
}
virtual void showPixels(PixelController<RGB_ORDER, LANES, PMASK> & pixels) {
mWait.wait();
uint32_t clocks = showRGBInternal(pixels);
#if FASTLED_ALLOW_INTERRUPTS == 0
// Adjust the timer
long microsTaken = CLKS_TO_MICROS(clocks);
MS_COUNTER += (1 + (microsTaken / 1000));
#endif
mWait.mark();
}
typedef union {
uint8_t bytes[16];
uint16_t shorts[8];
uint32_t raw[4];
} Lines;
template<int BITS,int PX> __attribute__ ((always_inline)) inline static void writeBits(register uint32_t & next_mark, register Lines & b, PixelController<RGB_ORDER,LANES, PMASK> &pixels) { // , register uint32_t & b2) {
register Lines b2;
transpose8x1(b.bytes,b2.bytes);
transpose8x1(b.bytes+8,b2.bytes+8);
register uint8_t d = pixels.template getd<PX>(pixels);
register uint8_t scale = pixels.template getscale<PX>(pixels);
for(register uint32_t i = 0; (i < LANES) && (i < 8); i++) {
while(ARM_DWT_CYCCNT < next_mark);
next_mark = ARM_DWT_CYCCNT + (T1+T2+T3)-3;
*FastPin<PORTD_FIRST_PIN>::sport() = PMASK_LO;
*FastPin<PORTC_FIRST_PIN>::sport() = PMASK_HI;
while((next_mark - ARM_DWT_CYCCNT) > (T2+T3+6));
*FastPin<PORTD_FIRST_PIN>::cport() = ((~b2.bytes[7-i]) & PMASK_LO);
*FastPin<PORTC_FIRST_PIN>::cport() = ((~b2.bytes[15-i]) & PMASK_HI);
while((next_mark - ARM_DWT_CYCCNT) > (T3));
*FastPin<PORTD_FIRST_PIN>::cport() = PMASK_LO;
*FastPin<PORTC_FIRST_PIN>::cport() = PMASK_HI;
b.bytes[i] = pixels.template loadAndScale<PX>(pixels,i,d,scale);
if(LANES==16 || (LANES>8 && ((i+8) < LANES))) {
b.bytes[i+8] = pixels.template loadAndScale<PX>(pixels,i+8,d,scale);
}
}
}
// This method is made static to force making register Y available to use for data on AVR - if the method is non-static, then
// gcc will use register Y for the this pointer.
static uint32_t showRGBInternal(PixelController<RGB_ORDER,LANES, PMASK> &allpixels) {
// Get access to the clock
ARM_DEMCR |= ARM_DEMCR_TRCENA;
ARM_DWT_CTRL |= ARM_DWT_CTRL_CYCCNTENA;
ARM_DWT_CYCCNT = 0;
// Setup the pixel controller and load/scale the first byte
allpixels.preStepFirstByteDithering();
register Lines b0;
allpixels.preStepFirstByteDithering();
for(int i = 0; i < LANES; i++) {
b0.bytes[i] = allpixels.loadAndScale0(i);
}
cli();
uint32_t next_mark = ARM_DWT_CYCCNT + (T1+T2+T3);
while(allpixels.has(1)) {
allpixels.stepDithering();
#if 0 && (FASTLED_ALLOW_INTERRUPTS == 1)
cli();
// if interrupts took longer than 45µs, punt on the current frame
if(ARM_DWT_CYCCNT > next_mark) {
if((ARM_DWT_CYCCNT-next_mark) > ((WAIT_TIME-INTERRUPT_THRESHOLD)*CLKS_PER_US)) { sei(); return ARM_DWT_CYCCNT; }
}
#endif
// Write first byte, read next byte
writeBits<8+XTRA0,1>(next_mark, b0, allpixels);
// Write second byte, read 3rd byte
writeBits<8+XTRA0,2>(next_mark, b0, allpixels);
allpixels.advanceData();
// Write third byte
writeBits<8+XTRA0,0>(next_mark, b0, allpixels);
#if 0 && (FASTLED_ALLOW_INTERRUPTS == 1)
sei();
#endif
};
sei();
return ARM_DWT_CYCCNT;
}
};
FASTLED_NAMESPACE_END
#endif
#endif

View File

@ -0,0 +1,13 @@
#ifndef __INC_FASTLED_ARM_K20_H
#define __INC_FASTLED_ARM_K20_H
// Include the k20 headers
#include "fastpin_arm_k20.h"
#include "fastspi_arm_k20.h"
#include "octows2811_controller.h"
#include "ws2812serial_controller.h"
#include "smartmatrix_t3.h"
#include "clockless_arm_k20.h"
#include "clockless_block_arm_k20.h"
#endif

View File

@ -0,0 +1,120 @@
#ifndef __FASTPIN_ARM_K20_H
#define __FASTPIN_ARM_K20_H
FASTLED_NAMESPACE_BEGIN
#if defined(FASTLED_FORCE_SOFTWARE_PINS)
#warning "Software pin support forced, pin access will be sloightly slower."
#define NO_HARDWARE_PIN_SUPPORT
#undef HAS_HARDWARE_PIN_SUPPORT
#else
/// Template definition for teensy 3.0 style ARM pins, providing direct access to the various GPIO registers. Note that this
/// uses the full port GPIO registers. In theory, in some way, bit-band register access -should- be faster, however I have found
/// that something about the way gcc does register allocation results in the bit-band code being slower. It will need more fine tuning.
/// The registers are data output, set output, clear output, toggle output, input, and direction
template<uint8_t PIN, uint32_t _MASK, typename _PDOR, typename _PSOR, typename _PCOR, typename _PTOR, typename _PDIR, typename _PDDR> class _ARMPIN {
public:
typedef volatile uint32_t * port_ptr_t;
typedef uint32_t port_t;
inline static void setOutput() { pinMode(PIN, OUTPUT); } // TODO: perform MUX config { _PDDR::r() |= _MASK; }
inline static void setInput() { pinMode(PIN, INPUT); } // TODO: preform MUX config { _PDDR::r() &= ~_MASK; }
inline static void hi() __attribute__ ((always_inline)) { _PSOR::r() = _MASK; }
inline static void lo() __attribute__ ((always_inline)) { _PCOR::r() = _MASK; }
inline static void set(register port_t val) __attribute__ ((always_inline)) { _PDOR::r() = val; }
inline static void strobe() __attribute__ ((always_inline)) { toggle(); toggle(); }
inline static void toggle() __attribute__ ((always_inline)) { _PTOR::r() = _MASK; }
inline static void hi(register port_ptr_t port) __attribute__ ((always_inline)) { hi(); }
inline static void lo(register port_ptr_t port) __attribute__ ((always_inline)) { lo(); }
inline static void fastset(register port_ptr_t port, register port_t val) __attribute__ ((always_inline)) { *port = val; }
inline static port_t hival() __attribute__ ((always_inline)) { return _PDOR::r() | _MASK; }
inline static port_t loval() __attribute__ ((always_inline)) { return _PDOR::r() & ~_MASK; }
inline static port_ptr_t port() __attribute__ ((always_inline)) { return &_PDOR::r(); }
inline static port_ptr_t sport() __attribute__ ((always_inline)) { return &_PSOR::r(); }
inline static port_ptr_t cport() __attribute__ ((always_inline)) { return &_PCOR::r(); }
inline static port_t mask() __attribute__ ((always_inline)) { return _MASK; }
};
/// Template definition for teensy 3.0 style ARM pins using bit banding, providing direct access to the various GPIO registers. GCC
/// does a poor job of optimizing around these accesses so they are not being used just yet.
template<uint8_t PIN, int _BIT, typename _PDOR, typename _PSOR, typename _PCOR, typename _PTOR, typename _PDIR, typename _PDDR> class _ARMPIN_BITBAND {
public:
typedef volatile uint32_t * port_ptr_t;
typedef uint32_t port_t;
inline static void setOutput() { pinMode(PIN, OUTPUT); } // TODO: perform MUX config { _PDDR::r() |= _MASK; }
inline static void setInput() { pinMode(PIN, INPUT); } // TODO: preform MUX config { _PDDR::r() &= ~_MASK; }
inline static void hi() __attribute__ ((always_inline)) { *_PDOR::template rx<_BIT>() = 1; }
inline static void lo() __attribute__ ((always_inline)) { *_PDOR::template rx<_BIT>() = 0; }
inline static void set(register port_t val) __attribute__ ((always_inline)) { *_PDOR::template rx<_BIT>() = val; }
inline static void strobe() __attribute__ ((always_inline)) { toggle(); toggle(); }
inline static void toggle() __attribute__ ((always_inline)) { *_PTOR::template rx<_BIT>() = 1; }
inline static void hi(register port_ptr_t port) __attribute__ ((always_inline)) { hi(); }
inline static void lo(register port_ptr_t port) __attribute__ ((always_inline)) { lo(); }
inline static void fastset(register port_ptr_t port, register port_t val) __attribute__ ((always_inline)) { *_PDOR::template rx<_BIT>() = val; }
inline static port_t hival() __attribute__ ((always_inline)) { return 1; }
inline static port_t loval() __attribute__ ((always_inline)) { return 0; }
inline static port_ptr_t port() __attribute__ ((always_inline)) { return _PDOR::template rx<_BIT>(); }
inline static port_t mask() __attribute__ ((always_inline)) { return 1; }
};
// Macros for k20 pin access/definition
#define GPIO_BITBAND_ADDR(reg, bit) (((uint32_t)&(reg) - 0x40000000) * 32 + (bit) * 4 + 0x42000000)
#define GPIO_BITBAND_PTR(reg, bit) ((uint32_t *)GPIO_BITBAND_ADDR((reg), (bit)))
#define _R(T) struct __gen_struct_ ## T
#define _RD32(T) struct __gen_struct_ ## T { static __attribute__((always_inline)) inline reg32_t r() { return T; } \
template<int BIT> static __attribute__((always_inline)) inline ptr_reg32_t rx() { return GPIO_BITBAND_PTR(T, BIT); } };
#define _FL_IO(L,C) _RD32(GPIO ## L ## _PDOR); _RD32(GPIO ## L ## _PSOR); _RD32(GPIO ## L ## _PCOR); _RD32(GPIO ## L ## _PTOR); _RD32(GPIO ## L ## _PDIR); _RD32(GPIO ## L ## _PDDR); _FL_DEFINE_PORT3(L,C,_R(GPIO ## L ## _PDOR));
#define _FL_DEFPIN(PIN, BIT, L) template<> class FastPin<PIN> : public _ARMPIN<PIN, 1 << BIT, _R(GPIO ## L ## _PDOR), _R(GPIO ## L ## _PSOR), _R(GPIO ## L ## _PCOR), \
_R(GPIO ## L ## _PTOR), _R(GPIO ## L ## _PDIR), _R(GPIO ## L ## _PDDR)> {}; \
template<> class FastPinBB<PIN> : public _ARMPIN_BITBAND<PIN, BIT, _R(GPIO ## L ## _PDOR), _R(GPIO ## L ## _PSOR), _R(GPIO ## L ## _PCOR), \
_R(GPIO ## L ## _PTOR), _R(GPIO ## L ## _PDIR), _R(GPIO ## L ## _PDDR)> {};
// Actual pin definitions
_FL_IO(A,0); _FL_IO(B,1); _FL_IO(C,2); _FL_IO(D,3); _FL_IO(E,4);
#if defined(FASTLED_TEENSY3) && defined(CORE_TEENSY)
#define MAX_PIN 33
_FL_DEFPIN(0, 16, B); _FL_DEFPIN(1, 17, B); _FL_DEFPIN(2, 0, D); _FL_DEFPIN(3, 12, A);
_FL_DEFPIN(4, 13, A); _FL_DEFPIN(5, 7, D); _FL_DEFPIN(6, 4, D); _FL_DEFPIN(7, 2, D);
_FL_DEFPIN(8, 3, D); _FL_DEFPIN(9, 3, C); _FL_DEFPIN(10, 4, C); _FL_DEFPIN(11, 6, C);
_FL_DEFPIN(12, 7, C); _FL_DEFPIN(13, 5, C); _FL_DEFPIN(14, 1, D); _FL_DEFPIN(15, 0, C);
_FL_DEFPIN(16, 0, B); _FL_DEFPIN(17, 1, B); _FL_DEFPIN(18, 3, B); _FL_DEFPIN(19, 2, B);
_FL_DEFPIN(20, 5, D); _FL_DEFPIN(21, 6, D); _FL_DEFPIN(22, 1, C); _FL_DEFPIN(23, 2, C);
_FL_DEFPIN(24, 5, A); _FL_DEFPIN(25, 19, B); _FL_DEFPIN(26, 1, E); _FL_DEFPIN(27, 9, C);
_FL_DEFPIN(28, 8, C); _FL_DEFPIN(29, 10, C); _FL_DEFPIN(30, 11, C); _FL_DEFPIN(31, 0, E);
_FL_DEFPIN(32, 18, B); _FL_DEFPIN(33, 4, A);
#define SPI_DATA 11
#define SPI_CLOCK 13
#define SPI1 (*(SPI_t *)0x4002D000)
#define SPI2_DATA 7
#define SPI2_CLOCK 14
#define FASTLED_TEENSY3
#define ARM_HARDWARE_SPI
#define HAS_HARDWARE_PIN_SUPPORT
#endif
#endif // FASTLED_FORCE_SOFTWARE_PINS
FASTLED_NAMESPACE_END
#endif // __INC_FASTPIN_ARM_K20

View File

@ -0,0 +1,466 @@
#ifndef __INC_FASTSPI_ARM_H
#define __INC_FASTSPI_ARM_H
FASTLED_NAMESPACE_BEGIN
#if defined(FASTLED_TEENSY3) && defined(CORE_TEENSY)
// Version 1.20 renamed SPI_t to KINETISK_SPI_t
#if TEENSYDUINO >= 120
#define SPI_t KINETISK_SPI_t
#endif
#ifndef KINETISK_SPI0
#define KINETISK_SPI0 SPI0
#endif
#ifndef SPI_PUSHR_CONT
#define SPI_PUSHR_CONT SPIX.PUSHR_CONT
#define SPI_PUSHR_CTAS(X) SPIX.PUSHR_CTAS(X)
#define SPI_PUSHR_EOQ SPIX.PUSHR_EOQ
#define SPI_PUSHR_CTCNT SPIX.PUSHR_CTCNT
#define SPI_PUSHR_PCS(X) SPIX.PUSHR_PCS(X)
#endif
// Template function that, on compilation, expands to a constant representing the highest bit set in a byte. Right now,
// if no bits are set (value is 0), it returns 0, which is also the value returned if the lowest bit is the only bit
// set (the zero-th bit). Unclear if I will want this to change at some point.
template<int VAL, int BIT> class BitWork {
public:
static int highestBit() __attribute__((always_inline)) { return (VAL & 1 << BIT) ? BIT : BitWork<VAL, BIT-1>::highestBit(); }
};
template<int VAL> class BitWork<VAL, 0> {
public:
static int highestBit() __attribute__((always_inline)) { return 0; }
};
#define MAX(A, B) (( (A) > (B) ) ? (A) : (B))
#define USE_CONT 0
// intra-frame backup data
struct SPIState {
uint32_t _ctar0,_ctar1;
uint32_t pins[4];
};
// extern SPIState gState;
// Templated function to translate a clock divider value into the prescalar, scalar, and clock doubling setting for the world.
template <int VAL> void getScalars(uint32_t & preScalar, uint32_t & scalar, uint32_t & dbl) {
switch(VAL) {
// Handle the dbl clock cases
case 0: case 1:
case 2: preScalar = 0; scalar = 0; dbl = 1; break;
case 3: preScalar = 1; scalar = 0; dbl = 1; break;
case 5: preScalar = 2; scalar = 0; dbl = 1; break;
case 7: preScalar = 3; scalar = 0; dbl = 1; break;
// Handle the scalar value 6 cases (since it's not a power of two, it won't get caught
// below)
case 9: preScalar = 1; scalar = 2; dbl = 1; break;
case 18: case 19: preScalar = 1; scalar = 2; dbl = 0; break;
case 15: preScalar = 2; scalar = 2; dbl = 1; break;
case 30: case 31: preScalar = 2; scalar = 2; dbl = 0; break;
case 21: case 22: case 23: preScalar = 3; scalar = 2; dbl = 1; break;
case 42: case 43: case 44: case 45: case 46: case 47: preScalar = 3; scalar = 2; dbl = 0; break;
default: {
int p2 = BitWork<VAL/2, 15>::highestBit();
int p3 = BitWork<VAL/3, 15>::highestBit();
int p5 = BitWork<VAL/5, 15>::highestBit();
int p7 = BitWork<VAL/7, 15>::highestBit();
int w2 = 2 * (1 << p2);
int w3 = (VAL/3) > 0 ? 3 * (1 << p3) : 0;
int w5 = (VAL/5) > 0 ? 5 * (1 << p5) : 0;
int w7 = (VAL/7) > 0 ? 7 * (1 << p7) : 0;
int maxval = MAX(MAX(w2, w3), MAX(w5, w7));
if(w2 == maxval) { preScalar = 0; scalar = p2; }
else if(w3 == maxval) { preScalar = 1; scalar = p3; }
else if(w5 == maxval) { preScalar = 2; scalar = p5; }
else if(w7 == maxval) { preScalar = 3; scalar = p7; }
dbl = 0;
if(scalar == 0) { dbl = 1; }
else if(scalar < 3) { scalar--; }
}
}
return;
}
#define SPIX (*(SPI_t*)pSPIX)
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint32_t _SPI_CLOCK_DIVIDER, uint32_t pSPIX>
class ARMHardwareSPIOutput {
Selectable *m_pSelect;
SPIState gState;
// Borrowed from the teensy3 SPSR emulation code -- note, enabling pin 7 disables pin 11 (and vice versa),
// and likewise enabling pin 14 disables pin 13 (and vice versa)
inline void enable_pins(void) __attribute__((always_inline)) {
//serial_print("enable_pins\n");
switch(_DATA_PIN) {
case 7:
CORE_PIN7_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN11_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
break;
case 11:
CORE_PIN11_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN7_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
break;
}
switch(_CLOCK_PIN) {
case 13:
CORE_PIN13_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN14_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
break;
case 14:
CORE_PIN14_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN13_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
break;
}
}
// Borrowed from the teensy3 SPSR emulation code. We disable the pins that we're using, and restore the state on the pins that we aren't using
inline void disable_pins(void) __attribute__((always_inline)) {
switch(_DATA_PIN) {
case 7: CORE_PIN7_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN11_CONFIG = gState.pins[1]; break;
case 11: CORE_PIN11_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN7_CONFIG = gState.pins[0]; break;
}
switch(_CLOCK_PIN) {
case 13: CORE_PIN13_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN14_CONFIG = gState.pins[3]; break;
case 14: CORE_PIN14_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); CORE_PIN13_CONFIG = gState.pins[2]; break;
}
}
static inline void update_ctars(uint32_t ctar0, uint32_t ctar1) __attribute__((always_inline)) {
if(SPIX.CTAR0 == ctar0 && SPIX.CTAR1 == ctar1) return;
uint32_t mcr = SPIX.MCR;
if(mcr & SPI_MCR_MDIS) {
SPIX.CTAR0 = ctar0;
SPIX.CTAR1 = ctar1;
} else {
SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPIX.CTAR0 = ctar0;
SPIX.CTAR1 = ctar1;
SPIX.MCR = mcr;
}
}
static inline void update_ctar0(uint32_t ctar) __attribute__((always_inline)) {
if (SPIX.CTAR0 == ctar) return;
uint32_t mcr = SPIX.MCR;
if (mcr & SPI_MCR_MDIS) {
SPIX.CTAR0 = ctar;
} else {
SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPIX.CTAR0 = ctar;
SPIX.MCR = mcr;
}
}
static inline void update_ctar1(uint32_t ctar) __attribute__((always_inline)) {
if (SPIX.CTAR1 == ctar) return;
uint32_t mcr = SPIX.MCR;
if (mcr & SPI_MCR_MDIS) {
SPIX.CTAR1 = ctar;
} else {
SPIX.MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPIX.CTAR1 = ctar;
SPIX.MCR = mcr;
}
}
void setSPIRate() {
// Configure CTAR0, defaulting to 8 bits and CTAR1, defaulting to 16 bits
uint32_t _PBR = 0;
uint32_t _BR = 0;
uint32_t _CSSCK = 0;
uint32_t _DBR = 0;
// if(_SPI_CLOCK_DIVIDER >= 256) { _PBR = 0; _BR = _CSSCK = 7; _DBR = 0; } // osc/256
// else if(_SPI_CLOCK_DIVIDER >= 128) { _PBR = 0; _BR = _CSSCK = 6; _DBR = 0; } // osc/128
// else if(_SPI_CLOCK_DIVIDER >= 64) { _PBR = 0; _BR = _CSSCK = 5; _DBR = 0; } // osc/64
// else if(_SPI_CLOCK_DIVIDER >= 32) { _PBR = 0; _BR = _CSSCK = 4; _DBR = 0; } // osc/32
// else if(_SPI_CLOCK_DIVIDER >= 16) { _PBR = 0; _BR = _CSSCK = 3; _DBR = 0; } // osc/16
// else if(_SPI_CLOCK_DIVIDER >= 8) { _PBR = 0; _BR = _CSSCK = 1; _DBR = 0; } // osc/8
// else if(_SPI_CLOCK_DIVIDER >= 7) { _PBR = 3; _BR = _CSSCK = 0; _DBR = 1; } // osc/7
// else if(_SPI_CLOCK_DIVIDER >= 5) { _PBR = 2; _BR = _CSSCK = 0; _DBR = 1; } // osc/5
// else if(_SPI_CLOCK_DIVIDER >= 4) { _PBR = 0; _BR = _CSSCK = 0; _DBR = 0; } // osc/4
// else if(_SPI_CLOCK_DIVIDER >= 3) { _PBR = 1; _BR = _CSSCK = 0; _DBR = 1; } // osc/3
// else { _PBR = 0; _BR = _CSSCK = 0; _DBR = 1; } // osc/2
getScalars<_SPI_CLOCK_DIVIDER>(_PBR, _BR, _DBR);
_CSSCK = _BR;
uint32_t ctar0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(_PBR) | SPI_CTAR_BR(_BR) | SPI_CTAR_CSSCK(_CSSCK);
uint32_t ctar1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(_PBR) | SPI_CTAR_BR(_BR) | SPI_CTAR_CSSCK(_CSSCK);
#if USE_CONT == 1
ctar0 |= SPI_CTAR_CPHA | SPI_CTAR_CPOL;
ctar1 |= SPI_CTAR_CPHA | SPI_CTAR_CPOL;
#endif
if(_DBR) {
ctar0 |= SPI_CTAR_DBR;
ctar1 |= SPI_CTAR_DBR;
}
update_ctars(ctar0,ctar1);
}
void inline save_spi_state() __attribute__ ((always_inline)) {
// save ctar data
gState._ctar0 = SPIX.CTAR0;
gState._ctar1 = SPIX.CTAR1;
// save data for the not-us pins
gState.pins[0] = CORE_PIN7_CONFIG;
gState.pins[1] = CORE_PIN11_CONFIG;
gState.pins[2] = CORE_PIN13_CONFIG;
gState.pins[3] = CORE_PIN14_CONFIG;
}
void inline restore_spi_state() __attribute__ ((always_inline)) {
// restore ctar data
update_ctars(gState._ctar0,gState._ctar1);
// restore data for the not-us pins (not necessary because disable_pins will do this)
// CORE_PIN7_CONFIG = gState.pins[0];
// CORE_PIN11_CONFIG = gState.pins[1];
// CORE_PIN13_CONFIG = gState.pins[2];
// CORE_PIN14_CONFIG = gState.pins[3];
}
public:
ARMHardwareSPIOutput() { m_pSelect = NULL; }
ARMHardwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void init() {
// set the pins to output
FastPin<_DATA_PIN>::setOutput();
FastPin<_CLOCK_PIN>::setOutput();
// Enable SPI0 clock
uint32_t sim6 = SIM_SCGC6;
if((SPI_t*)pSPIX == &KINETISK_SPI0) {
if (!(sim6 & SIM_SCGC6_SPI0)) {
//serial_print("init1\n");
SIM_SCGC6 = sim6 | SIM_SCGC6_SPI0;
SPIX.CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(1) | SPI_CTAR_BR(1);
}
} else if((SPI_t*)pSPIX == &SPI1) {
if (!(sim6 & SIM_SCGC6_SPI1)) {
//serial_print("init1\n");
SIM_SCGC6 = sim6 | SIM_SCGC6_SPI1;
SPIX.CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(1) | SPI_CTAR_BR(1);
}
}
// Configure SPI as the master and enable
SPIX.MCR |= SPI_MCR_MSTR; // | SPI_MCR_CONT_SCKE);
SPIX.MCR &= ~(SPI_MCR_MDIS | SPI_MCR_HALT);
// pin/spi configuration happens on select
}
static void waitFully() __attribute__((always_inline)) {
// Wait for the last byte to get shifted into the register
bool empty = false;
do {
cli();
if ((SPIX.SR & 0xF000) > 0) {
// reset the TCF flag
SPIX.SR |= SPI_SR_TCF;
} else {
empty = true;
}
sei();
} while (!empty);
// wait for the TCF flag to get set
while (!(SPIX.SR & SPI_SR_TCF));
SPIX.SR |= (SPI_SR_TCF | SPI_SR_EOQF);
}
static bool needwait() __attribute__((always_inline)) { return (SPIX.SR & 0x4000); }
static void wait() __attribute__((always_inline)) { while( (SPIX.SR & 0x4000) ); }
static void wait1() __attribute__((always_inline)) { while( (SPIX.SR & 0xF000) >= 0x2000); }
enum ECont { CONT, NOCONT };
enum EWait { PRE, POST, NONE };
enum ELast { NOTLAST, LAST };
#if USE_CONT == 1
#define CM CONT
#else
#define CM NOCONT
#endif
#define WM PRE
template<ECont CONT_STATE, EWait WAIT_STATE, ELast LAST_STATE> class Write {
public:
static void writeWord(uint16_t w) __attribute__((always_inline)) {
if(WAIT_STATE == PRE) { wait(); }
cli();
SPIX.PUSHR = ((LAST_STATE == LAST) ? SPI_PUSHR_EOQ : 0) |
((CONT_STATE == CONT) ? SPI_PUSHR_CONT : 0) |
SPI_PUSHR_CTAS(1) | (w & 0xFFFF);
SPIX.SR |= SPI_SR_TCF;
sei();
if(WAIT_STATE == POST) { wait(); }
}
static void writeByte(uint8_t b) __attribute__((always_inline)) {
if(WAIT_STATE == PRE) { wait(); }
cli();
SPIX.PUSHR = ((LAST_STATE == LAST) ? SPI_PUSHR_EOQ : 0) |
((CONT_STATE == CONT) ? SPI_PUSHR_CONT : 0) |
SPI_PUSHR_CTAS(0) | (b & 0xFF);
SPIX.SR |= SPI_SR_TCF;
sei();
if(WAIT_STATE == POST) { wait(); }
}
};
static void writeWord(uint16_t w) __attribute__((always_inline)) { wait(); cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF; sei(); }
static void writeWordNoWait(uint16_t w) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF; sei(); }
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); }
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF);SPIX.SR |= SPI_SR_TCF; sei(); wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); }
static void writeWordCont(uint16_t w) __attribute__((always_inline)) { wait(); cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF; sei(); }
static void writeWordContNoWait(uint16_t w) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | (w & 0xFFFF); SPIX.SR |= SPI_SR_TCF; sei();}
static void writeByteCont(uint8_t b) __attribute__((always_inline)) { wait(); cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); }
static void writeByteContPostWait(uint8_t b) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); wait(); }
static void writeByteContNoWait(uint8_t b) __attribute__((always_inline)) { cli(); SPIX.PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); SPIX.SR |= SPI_SR_TCF; sei(); }
// not the most efficient mechanism in the world - but should be enough for sm16716 and friends
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
uint32_t ctar1_save = SPIX.CTAR1;
// Clear out the FMSZ bits, reset them for 1 bit transferd for the start bit
uint32_t ctar1 = (ctar1_save & (~SPI_CTAR_FMSZ(15))) | SPI_CTAR_FMSZ(0);
update_ctar1(ctar1);
writeWord( (b & (1 << BIT)) != 0);
update_ctar1(ctar1_save);
}
void inline select() __attribute__((always_inline)) {
save_spi_state();
if(m_pSelect != NULL) { m_pSelect->select(); }
setSPIRate();
enable_pins();
}
void inline release() __attribute__((always_inline)) {
disable_pins();
if(m_pSelect != NULL) { m_pSelect->release(); }
restore_spi_state();
}
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) { Write<CM, WM, NOTLAST>::writeByte(value); }
}
void writeBytesValue(uint8_t value, int len) {
select();
while(len--) {
writeByte(value);
}
waitFully();
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
uint8_t *end = data + len;
select();
// could be optimized to write 16bit words out instead of 8bit bytes
while(data != end) {
writeByte(D::adjust(*data++));
}
D::postBlock(len);
waitFully();
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t FLAGS, class D, EOrder RGB_ORDER> void writePixels(PixelController<RGB_ORDER> pixels) {
select();
int len = pixels.mLen;
// Setup the pixel controller
if((FLAGS & FLAG_START_BIT) == 0) {
//If no start bit stupiditiy, write out as many 16-bit blocks as we can
while(pixels.has(2)) {
// Load and write out the first two bytes
if(WM == NONE) { wait1(); }
Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale0()) << 8 | D::adjust(pixels.loadAndScale1()));
// Load and write out the next two bytes (step dithering, advance data in between since we
// cross pixels here)
Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale2()) << 8 | D::adjust(pixels.stepAdvanceAndLoadAndScale0()));
// Load and write out the next two bytes
Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale1()) << 8 | D::adjust(pixels.loadAndScale2()));
pixels.stepDithering();
pixels.advanceData();
}
if(pixels.has(1)) {
if(WM == NONE) { wait1(); }
// write out the rest as alternating 16/8-bit blocks (likely to be just one)
Write<CM, WM, NOTLAST>::writeWord(D::adjust(pixels.loadAndScale0()) << 8 | D::adjust(pixels.loadAndScale1()));
Write<CM, WM, NOTLAST>::writeByte(D::adjust(pixels.loadAndScale2()));
}
D::postBlock(len);
waitFully();
} else if(FLAGS & FLAG_START_BIT) {
uint32_t ctar1_save = SPIX.CTAR1;
// Clear out the FMSZ bits, reset them for 9 bits transferd for the start bit
uint32_t ctar1 = (ctar1_save & (~SPI_CTAR_FMSZ(15))) | SPI_CTAR_FMSZ(8);
update_ctar1(ctar1);
while(pixels.has(1)) {
writeWord( 0x100 | D::adjust(pixels.loadAndScale0()));
writeByte(D::adjust(pixels.loadAndScale1()));
writeByte(D::adjust(pixels.loadAndScale2()));
pixels.advanceData();
pixels.stepDithering();
}
D::postBlock(len);
waitFully();
// restore ctar1
update_ctar1(ctar1_save);
}
release();
}
};
#endif
FASTLED_NAMESPACE_END
#endif

View File

@ -0,0 +1,46 @@
#ifndef __INC_LED_SYSDEFS_ARM_K20_H
#define __INC_LED_SYSDEFS_ARM_K20_H
#define FASTLED_TEENSY3
#define FASTLED_ARM
#ifndef INTERRUPT_THRESHOLD
#define INTERRUPT_THRESHOLD 1
#endif
// Default to allowing interrupts
#ifndef FASTLED_ALLOW_INTERRUPTS
#define FASTLED_ALLOW_INTERRUPTS 1
#endif
#if FASTLED_ALLOW_INTERRUPTS == 1
#define FASTLED_ACCURATE_CLOCK
#endif
#if (F_CPU == 96000000)
#define CLK_DBL 1
#endif
// Get some system include files
#include <avr/io.h>
#include <avr/interrupt.h> // for cli/se definitions
// Define the register types
#if defined(ARDUINO) // && ARDUINO < 150
typedef volatile uint8_t RoReg; /**< Read only 8-bit register (volatile const unsigned int) */
typedef volatile uint8_t RwReg; /**< Read-Write 8-bit register (volatile unsigned int) */
#endif
extern volatile uint32_t systick_millis_count;
# define MS_COUNTER systick_millis_count
// Default to using PROGMEM, since TEENSY3 provides it
// even though all it does is ignore it. Just being
// conservative here in case TEENSY3 changes.
#ifndef FASTLED_USE_PROGMEM
#define FASTLED_USE_PROGMEM 1
#endif
#endif

View File

@ -0,0 +1,66 @@
#ifndef __INC_OCTOWS2811_CONTROLLER_H
#define __INC_OCTOWS2811_CONTROLLER_H
#ifdef USE_OCTOWS2811
// #include "OctoWS2811.h"
FASTLED_NAMESPACE_BEGIN
template<EOrder RGB_ORDER = GRB, uint8_t CHIP = WS2811_800kHz>
class COctoWS2811Controller : public CPixelLEDController<RGB_ORDER, 8, 0xFF> {
OctoWS2811 *pocto;
uint8_t *drawbuffer,*framebuffer;
void _init(int nLeds) {
if(pocto == NULL) {
drawbuffer = (uint8_t*)malloc(nLeds * 8 * 3);
framebuffer = (uint8_t*)malloc(nLeds * 8 * 3);
// byte ordering is handled in show by the pixel controller
int config = WS2811_RGB;
config |= CHIP;
pocto = new OctoWS2811(nLeds, framebuffer, drawbuffer, config);
pocto->begin();
}
}
public:
COctoWS2811Controller() { pocto = NULL; }
virtual int size() { return CLEDController::size() * 8; }
virtual void init() { /* do nothing yet */ }
typedef union {
uint8_t bytes[8];
uint32_t raw[2];
} Lines;
virtual void showPixels(PixelController<RGB_ORDER, 8, 0xFF> & pixels) {
_init(pixels.size());
uint8_t *pData = drawbuffer;
while(pixels.has(1)) {
Lines b;
for(int i = 0; i < 8; i++) { b.bytes[i] = pixels.loadAndScale0(i); }
transpose8x1_MSB(b.bytes,pData); pData += 8;
for(int i = 0; i < 8; i++) { b.bytes[i] = pixels.loadAndScale1(i); }
transpose8x1_MSB(b.bytes,pData); pData += 8;
for(int i = 0; i < 8; i++) { b.bytes[i] = pixels.loadAndScale2(i); }
transpose8x1_MSB(b.bytes,pData); pData += 8;
pixels.stepDithering();
pixels.advanceData();
}
pocto->show();
}
};
FASTLED_NAMESPACE_END
#endif
#endif

View File

@ -0,0 +1,55 @@
#ifndef __INC_SMARTMATRIX_T3_H
#define __INC_SMARTMATRIX_T3_H
#ifdef SmartMatrix_h
#include <SmartMatrix.h>
FASTLED_NAMESPACE_BEGIN
extern SmartMatrix *pSmartMatrix;
// note - dmx simple must be included before FastSPI for this code to be enabled
class CSmartMatrixController : public CPixelLEDController<RGB_ORDER> {
SmartMatrix matrix;
public:
// initialize the LED controller
virtual void init() {
// Initialize 32x32 LED Matrix
matrix.begin();
matrix.setBrightness(255);
matrix.setColorCorrection(ccNone);
// Clear screen
clearLeds(0);
matrix.swapBuffers();
pSmartMatrix = &matrix;
}
virtual void showPixels(PixelController<RGB_ORDER> & pixels) {
if(SMART_MATRIX_CAN_TRIPLE_BUFFER) {
rgb24 *md = matrix.getRealBackBuffer();
} else {
rgb24 *md = matrix.backBuffer();
}
while(pixels.has(1)) {
md->red = pixels.loadAndScale0();
md->green = pixels.loadAndScale1();
md->blue = pixels.loadAndScale2();
md++;
pixels.advanceData();
pixels.stepDithering();
}
matrix.swapBuffers();
if(SMART_MATRIX_CAN_TRIPLE_BUFFER && pixels.advanceBy() > 0) {
matrix.setBackBuffer(pixels.mData);
}
}
};
FASTLED_NAMESPACE_END
#endif
#endif

View File

@ -0,0 +1,46 @@
#ifndef __INC_WS2812SERIAL_CONTROLLER_H
#define __INC_WS2812SERIAL_CONTROLLER_H
#ifdef USE_WS2812SERIAL
FASTLED_NAMESPACE_BEGIN
template<int DATA_PIN, EOrder RGB_ORDER>
class CWS2812SerialController : public CPixelLEDController<RGB_ORDER, 8, 0xFF> {
WS2812Serial *pserial;
uint8_t *drawbuffer,*framebuffer;
void _init(int nLeds) {
if (pserial == NULL) {
drawbuffer = (uint8_t*)malloc(nLeds * 3);
framebuffer = (uint8_t*)malloc(nLeds * 12);
pserial = new WS2812Serial(nLeds, framebuffer, drawbuffer, DATA_PIN, WS2812_RGB);
pserial->begin();
}
}
public:
CWS2812SerialController() { pserial = NULL; }
virtual void init() { /* do nothing yet */ }
virtual void showPixels(PixelController<RGB_ORDER, 8, 0xFF> & pixels) {
_init(pixels.size());
uint8_t *p = drawbuffer;
while(pixels.has(1)) {
*p++ = pixels.loadAndScale0();
*p++ = pixels.loadAndScale1();
*p++ = pixels.loadAndScale2();
pixels.stepDithering();
pixels.advanceData();
}
pserial->show();
}
};
FASTLED_NAMESPACE_END
#endif // USE_WS2812SERIAL
#endif // __INC_WS2812SERIAL_CONTROLLER_H